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Abstract 

Part I of this report includes formulations for scattering from the 

coated plate and the coated dihedral corner reflector. A coated plate 

model based upon the Uniform Theory of Diffraction (UTD) for impedance 

wedges was presented in the last report. In order to  resolve inaccura- 

cies and discontinuities in the predicted patterns using the UTD-based 

model, an improved model that uses more accurate diffraction coeffi- 

cients is presented in this report. A Physical Optics (PO) model for the 

coated dihedral corner reflector is presented as an intermediary step in 

developing a high-frequency model for this structure. The PO model is 

based upon the reflection coefficients for a metal-backed lossy material. 

Preliminary PO results for the dihedral corner reflector suggest that, 

in addition to being much faster computationally, this model may be 

more accurate than existing moment method (MM) models. 

Part I1 of this report presents an improved Physical Optics (PO) 

/ Equivalent Currents model for modeling the Radar Cross Section 

(RCS) of both square and triangular, perfectly conducting, trihedral 

corner reflectors. The new model uses the PO approximation at each 

reflection for the first- and second-order reflection terms. For the third- 

order reflection terms, a Geometrical Optics (GO) approximation is 

used for the first reflection; and PO approximations are used for the 

remaining reflections. The previously reported model used GO for all 

reflections except the terminating reflection. Using PO for most of the 

reflections results in a computationally slower model because many in- 

tegrations must be performed numerically, but the advantage is that 

the predicted RCS using the new model is much more accurate. Com- 

parisons between the two PO models, Finite-Difference Time-Domain 

(FDTD) and experimental data are presented for validation of the new 

model. 
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I. HIGH-FREQUENCY TECHNIQUES 
FOR RCS PREDICTION 
OF PLATE GEOMETRIES 

A. INTRODUCTION 

Recent reports [ l ,  2, 3, 4, 5 ,  6, 7, 81 have dealt with the use of the Uniform Theory 

of Diffraction (UTD) for impedance wedges [9, 101 to model the principal-plane 

radar cross section (RCS) of a coated conducting plate. The initial goal was to 

apply the knowledge gained from modeling this simple structure to  more compli- 

cated geometries, specifically the coated dihedral corner reflector. As the modeling 

process has evolved, however, the importance of modeling the plate has grown as 

a problem in and of itself, independent from the dihedral corner reflector problem. 

Specifically, the UTD plate model presented in the previous report [l] yielded fairly 

good results near and at normal incidence; however, angles closer to the transi- 

tion regions, near grazing incidence, presented problems. The problems involved 

inaccuracies and discontinuities in the predicted patterns in the regions near the 

transition from the coated side to  the uncoated side of the plate. The resolution 

of these problems requires the use of more accurate diffraction coefficients in these 

regions. Modifications to  the model presented in the last report are discussed in 

this report. 

Because diffraction terms are the predominant contributors to the overall 

RCS of the coated plate, the formulation of an accurate high-frequency model for 

this geometry requires careful analysis of diffraction mechanisms and methods of 

modeling various diffraction mechanisms for coated structures. The information 

garnered from this analysis is useful for applications to other coated structures for 

which diffractions are the predominate contribution to the overall RCS; however, 

this analysis is not very useful for the analysis of the coated dihedral corner reflector 

because the main scattering mechanisms for this structure are single and double 
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Observation 

Figure 1 : Impedance wedge geometry. 

reflections. In order to resolve inaccuracies in a previously reported UTD model 

for the coated dihedral corner reflector [ll], a Physical Optics (PO) model for this 

structure is presented in this report. Results are compared to  Moment Method 

(MM) data. 

B. THEORY AND RESULTS 

1. Coated Plate - UTD Analysis 

The UTD model for coated plate scattering presented in the previous report [l] 

used the UTD diffraction coefficients formulated by Tiberio, et al. , and Griesser 

and Balanis [9, 101 for an impedance wedge, shown in Fig. 1. The coated plate, 

shown in Fig. 2, was modeled as the joining of two half planes with a coating 

of finite thickness on the upper wedge faces. The coating was incorporated into 

the model using an equivalent impedance approximated by the impedance of a 

comparable short-circuited transmission-line. Results presented in the last report 

demonstrated that the UTD model formulated in this manner is very accurate for 
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Figure 2: Geometry for principal-plane scattering from a strip/plate with a finite- 
thickness coating backed by a perfect conductor. 

most scattering angles. The necessity of incorporating higher-order diffraction and 

surface-wave terms was also demonstrated. 

Terms accounting for multiple diffractions between the edges improve the 

model; however, the way in which these terms were incorporated into the model 

presented in the last report leads to inaccuracies and discontinuities in the region 

of transition from the coated to the uncoated side of the plate. Specifically, the 

diffraction coefficient for the impedance wedge goes to zero when the source is 

on the face of the wedge and for the reciprocal case of an observation point on 

the wedge face. In order to use this coefficient for higher-order diffractions, the 

coefficient was calculated for a point slightly off the wedge face. This worked 

remarkably well for most scattering angles; however, improvement in the grazing 

regions is desired. 

To more effectively account for higher-order diffractions, a more precise coef- 

ficient that does not go to  zero on the face of the wedge must be used. Tiberio, et  

al., formulated the necessary diffraction coefficient in [9]. The general form of the 

resulting diffracted field is given in Eq. (16) of [9]. This can be greatly simplified 
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for the case of a half plane [la] so that the resulting expression that will be included 

in a new version of the UTD model for the coated plate is: 

X $2 (2  - 4 + $0) $2 (7 - eo)  $2 (a + 4 + 02) $2 ($ - 82) 

$2 (F - 4 - $0) $2 (7 t eo) $2 (; + 4 - 02) $2 (F + e2) 

The usual definitions for the variables apply; L e . ,  00,2 are he Brewster angles for 

the designated faces, fl is the angle of incidence, 4 is the angle of observation, p 

is the distance between diffraction points, F [ z ]  is the Fresnel transition function 

extended to complex arguments as explained in [la], and f 2 ( t )  is the expression: 

(2) 
T sin t - 2&sin(t/2) + 2t 

8T cos t f 2 ( t )  = - 

In general, fn( t )  is an infinite integral [9]. Fortunately, this integral reduces to 

closed form for the case of a half plane ( n  = 2) and is given above as f Z ( t ) .  

This updated version of the UTD model will be coded in the next reporting 

period and numerical results obtained and compared to  measured data. Another 

modification that will be explored is the use of the diffraction coefficients reported 

in [13, 141. These coefficients are for cylindrical-wave incidence and should model 

interactions between edges more accurately than the previously used coefficients, 

which are theoretically only for plane-wave incidence on a wedge. 
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Figure 3: Dihedral corner reflector geometry. 

2. Coated Dihedral Corner Reflector 

The coated dihedral corner reflector, shown in Fig. 3, is an important structure to 

analyze because it supports most of the basic scattering mechanisms. Specifically, 

mechanisms which must be included in a high-frequency RCS model are first-order 

diffractions for both exterior and interior wedges; single, double, and triple reflec- 

tions; and reflection-diffraction terms. The most logical approach to formulating a 

high-frequency model for this geometry is to combine UTD, to  account for diffrac- 

tions, and Geometrical Optics (GO), to account for reflections. This model was 

formulated and reported on by Griesser, et  al., in [Ill; however, since the appear- 

ance of this paper, inaccuracies due to the reflection terms have been discovered 

[7] .  In order to  isolate the source of the inaccuracy, a PO model for the reflector 
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is examined in this report. Although the PO model cannot account for diffraction 

mechanisms, it is a good model to  use to study the reflector because reflection 

terms dominate the scattering pattern of this geometry. A brief summary of the 

model is given in the next section, followed by a results section, which includes 

MM data for comparison. In addition to being a computationally intensive model, 

the MM model is also highly inaccurate at some points. These difficulties with the 

MM model further emphasize the need for an accurate high-frequency model for 

the coated dihedral corner reflector. 

PO Analysis: The PO model for the coated reflector is based upon the PO 

model for the perfectly conducting reflector, reported upon in [15]. Obtaining re- 

sults for the coated reflector simply involves multiplying the fields for the perfectly 

conducting geometry by the appropriate reflection coefficients. The reflection co- 

efficient for a coated, flat plane backed by a perfect conductor is used as the 

fundamental reflection coefficient. The short-circuited transmission-line approxi- 

mation is used to  account for the coating impedance. The expressions for the basic 

reflection coefficients are, thus, given by: 

Soft Polarization 

Hard Polarization 

\ ,  

cos 8 + r]eq\lw P C C C  

(4) 

where 

The angle of incidence with respect to  the surface normal is 8; pc and cc are the 

relative permeability and permittivity, respectively, of the coating material; and t 

is the coating thickness in free-space wavelengths. 
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Coefficients for multiple reflections are formed as a product of this basic co- 

efficient. To obtain the appropriate reflection terms for each plate of the reflector, 

the incident angles measured from the normal to  each plate must be known at 

each reflection. The reflection coefficients are a product of the basic coefficient 

from above evaluated at the appropriate angles. The following table summarizes 

the reflection coefficients for single, double, and triple reflections from both plates 

of the reflector. Referring to Fig. 3, the left-hand plate is Plate I and the right- 

hand plate is Plate 11. The angle of incidence with respect to the given coordinate 

system is 4; and a is half of the total interior angle between the plates of the 

reflector. 

Angular Range 
Plate I - Single 
Reflection 

Angle to the Normal Reflection Coefficent 

Plate I - Double 1 
Reflect ion 

Reflection I I 

Reflection I I 

Reflection I I 
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Figure 4: Monostatic RCS of a perfectly conducting dihedral corner reflector 
(W1 = W2 = L = 5.6088X7 2a = go", soft polarization). 

Results: Experiments are currently in progress to obtain measured RCS data for 

various dihedral corner reflector geometries. Both conductors and coated conduc- 

tors are being used, and both polarizations are being considered. The coatings that 

are being studied are electrically thin and lossy. These results will be presented in 

the next reporting period. 

Preliminary results that illustrate the validity of using the PO model pre- 

sented in the last section are shown in Figs. 4 and 5. The geometry is rotated 180" 

from that of Fig. 3 so that the reflector is situated in the region 135" 5 q!I 5 215". 

In other words, q!I = 180" in Figs. 4 and 5 corresponds to  q5 = 0" in Fig. 3, where 

the corner would analogously be situated in the region -45" 5 q5 5 45". In Fig. 4 

PO and MM results are compared for a perfectly conducting reflector. The high 

accuracy of the PO results demonstrates that reflections are the predominate scat- 

tering mechanisms for this geometry; and because of this, the PO model should 
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Figure 5: Monostatic RCS of a coated conducting dihedral corner reflector (W1 = 
W2 = L = 5.6088X) 2a = go", soft polarization, coating: t = O.O65X, p, = 
1.5 - j0.7, cC = 7.8 - j1.6). 
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yield fairly accurate results for the coated reflector also. 

Fig. 5 contains PO and MM results for a coated reflector. A rough analysis 

reveals that the PO results are more accurate than the MM. The loss due to a 

single reflection at normal incidence for this coating should be 21.18 dB and the 

loss due to a double reflection at 45" t o  each reflecting surface should be 28.34 dB. 

At q5 = 180°, which corresponds to  the maximum loss due t o  double reflection, the 

PO model predicts a loss of 29.02 dB between the RCS for the perfectly conducting 

geometry in Fig. 4 and the RCS for the coated geometry in Fig. 5. The MM predicts 

a loss of 29.73 dB at this same point. At q5 = 135", which corresponds to  normal 

incidence to Plate I1 and, thus, maximum loss due to a single reflection, the PO 

model predicts a loss of 19.53 dB, while the MM model predicts a loss of only 

16.64 dB. In addition to  being more accurate than the MM model, the PO model 

is also much faster. The data in Fig. 5 took only a few seconds for the PO model 

to compute, whereas the MM model took several hours to complete these RCS 

calculations. 

C. FUTURE WORK 

In this report, suggestions for improving the UTD model for predicting the RCS of 

the coated plate were presented along with a PO model for the coated dihedral cor- 

ner reflection. Both of these structures are important for studying basic scattering 

mechanisms that must be understood in order to  progress to  formulating accurate 

high-frequency models for complicated structures in which multiple reflections and 

multiple diffractions dominate, or at least contribute significantly to, the overall 

scattering pattern. Immediate future work on this project will involve completing 

the coated plate model and obtaining calculated results to  validate using experi- 

mental data. In addition, the work on the coated dihedral corner reflector will be 

completed. Specifically, the UTD analysis will be corrected to resolved inaccura- 

cies. Experimental work is in progress and will yield data to be used for validation. 

Since the accuracy of the MM solution is in question, this measured data will be ex- 
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tremely important. Other future work will focus on nonprincipal-plane scattering 

from both uncoated and coated conducting plates. This scattering configuration 

is useful for studying interaction among skewed edges and corner scattering. 
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11. A PHYSICAL OPTICS/ 
EQUIVALENT CURRENTS MODEL 
FOR THE RCS OF 
TRIHEDRAL CORNER REFLECTORS 

A. INTRODUCTION 

In the last report we examined the radar cross section (RCS) of both the square and 

triangular trihedral corner reflectors in their interior regions. The reflected fields 

were calculated using a combination of Geometrical Optics (GO) and Physical 

Optics (PO). Specifically, the expressions for the initial reflected fields were derived 

using GO and the appropriate boundary conditions on the surface of a perfectly 

conducting plate; and the final reflected fields were calculated by applying the 

PO approximation on the plate of last reflection. The surface integration was 

evaluated in closed-form; therefore, no numerical integration was really necessary. 

The integrand was simplified considerably using the far-field approximations before 

the integration was actually performed. Nevertheless, for far-field computations 

these approximations had negligible effect on the final results. 

The diffracted fields from the exterior edges of both trihedral corner reflec- 

tors were computed using the Method of Equivalent Currents (MEC) based on 

Michaeli’s Physical Theory of Diffraction (PTD) equivalent edge currents, some- 

times referred to as PTD-EEC [16, 171. These are based on the fringe currents 

that exist at the edges. In other words, the PO current is not included in the ex- 

pressions of the PTD-EEC; therefore, the diffracted fields are expected to  improve 

upon the RCS formulation based upon the reflected fields alone. 

Comparison with experimental and Finite-Diference-Time-Domain (FDTD) 

data was included in the previous report. For most of the RCS patterns that 

were obtained based on the above modeling, there was very good to excellent 

agreement with both experimental and FDTD data. However, for some of the RCS 
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patterns, especially the conical one, the agreement was not very good. Specifically, 

at and near the null points the difference was as large as 4 or 5 dB. Also, the 

height of the two sidelobes at 0" and 90" was sometimes off by 1 or 2 dB. Other 

minor discrepancies were also observed in some of those patterns. This was the 

main reason that motivated us to introduce a new approach for more accurately 

calculating the multiply reflected fields from the three trihedral plates [15]. The 

improved method utilizes strictly PO for all reflections. However, in order to reduce 

the CPU time, GO is used for the first reflection of all the triply reflected fields, 

whereas PO is used for the last two reflections. In the case of doubly reflected 

fields, PO was applied on both the plates of reflection. Expressions for the single 

reflections are identical to those implemented by the previous approach already 

explained in the last two reports. 

RCS patterns of trihedral corner reflectors were obtained in the past [Is]-[20] 

by using Physical Optics (PO) and diffraction techniques. In all of these cases 

[18]-[20], the PO approximation was applied only on the plate of last reflection. 

At initial reflections Geometrical Optics (GO) was used. For example, the CAD- 

based Shooting and Bouncing Ray (SBR) method [18], as well as many other 

multi-purpose computer codes [ 191, apply GO at consecutive initial reflections to 

find the fields at an aperture plane. Based on these fields, the surface current 

density on the aperture is evaluated and then integrated to find the scattered 

fields. This approach provides fairly good results compared with measurements. 

It is also important to mention here that in all the above references researchers 

examined the RCS patterns of the square trihedral only. The only reference to the 

triangular trihedral was the work by Peters [21] performed in the 1960's. 

Improved results can be obtained if GO is not used at initial reflections. The 

reason is that the GO reflected field is always a plane wave which is usually not a 

good approximation of the actual reflected field, especially in the near-field region 

of the plate of reflection. However if PO, instead of GO, is applied at initial 

reflections, the induced surface current densities on subsequent plates due to these 
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reflected fields will be more accurate; thus, the scattered fields will be more accurate 

as well. This approach is valid for any number of multiple reflections. In the 

case of a trihedral corner reflector, there are single reflections, double reflections, 

and triple reflections. PO can be applied on both plates for double reflection 

terms, as well as on all three plates for triple reflections. However, for double 

reflections the formulations result in a quadruble integration, whereas for triple 

reflections they result in a six-fold integration. To evaluate these integrations, 

various numerical integration techniques, such as Gaussian quadrature, can be 

implemented. However, the computational cost, as well as the computational 

error, increases as the number of nested integrations increases. For this reason, 

GO is implemented on the first reflection of a triple bounce in the interior of the 

trihedral; and PO is applied on the plates of the last two reflections. In other 

words, a quadruble integration is required by both double and triple reflections. 

The same approach was also used to improve the RCS patterns of dihedral corner 

reflectors [15]. 

In addition to considerable improvements in the RCS patterns, the use of 

strictly PO on all multiple reflections has the advantage of causing no shaded 

areas on the second and third plates of the trihedral [20]. The PO reflected fields 

from a trihedral plate will completely illuminate the other two plates; therefore, 

discontinuities on the surface current densities are eliminated. In our case, for 

triple reflections it is still necessary to find the shaded and illuminated areas on 

the second plate, but not on the third plate. Thus, the surface current density on 

the plate of last reflection is still continuous. In this analysis, first-order diffractions 

from the exterior edges of both the triangular and square trihedrals are included 

as in the previous method already discussed in the last two reports. 

B. ANALYSIS: THE IMPROVED 

Contrary to  the previous method, which uses GO 

proved method uses strictly PO for all reflections. 

METHOD 

for initial reflections, the im- 

In other words, the improved 
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method implements PO on all the trihedral plates for both double and triple re- 

flections. In the case of triple reflections, however, it was decided that GO, instead 

of PO, should be applied on the plate of first reflection. The reasons for using 

this formulation method were, first, to  reduce the CPU time required for the long 

computations and, second, to keep the numerical error as small as possible. Sim- 

ply stated, the improved method uses PO for single reflections, PO-PO for double 

reflections, and GO-PO-PO for triple reflections. 

Using strictly PO for all the reflections, the interior of the trihedral is totally 

illuminated, not only in the case of single reflections, but also in the case of double 

and triple reflections as well. Note that the source must be located somewhere in 

the interior of the trihedral, otherwise shading on the plate of first reflection will 

always occur. In any case, the reflected fields from the plate of first reflection will 

still illuminate the other two trihedral plates completely. The fact that shading 

does not occur when strictly PO is used for all reflections (as long as the source lies 

in the interior region of the trihedral) is a major advantage of the improved method, 

as compared to the previous method. The reason is that many of the numerical 

computations that had been used to find the illuminated and shadowed regions on 

a particular plate are now not necessary. Consequently, the PO surface integral 

will always be evaluated on the entire surface of that plate; however, because of the 

use of GO for the triple reflected fields, it is still necessary to  find the illuminated 

area on the second plate. 

Another important advantage of the improved method, as compared to the 

previous method, is that the reflected fields are now more accurately evaluated. 

Using the previous method, the initial reflected fields were calculated based on the 

GO approximation, which assumes that the reflected field from a flat plate is still 

a plane wave with a direction obtained using the Snell’s law of reflection. This is a 

fairly good approximation, especially as the plate becomes larger; however, when 

multiple reflections occur, as in the case of a trihedral, the second plate lies in 

the near-field region of the first plate, and consequently the reflected field cannot 
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be considered exactly a plane wave. On the other hand, by applying PO on the 

plate of first reflection, without actually using the far-field approximation on the 

radiation integral, the reflected field in the near-field region of the first plate can be 

calculated more accurately. Therefore, the surface current density on the second 

plate, which is twice the reflected magnetic field from the first plate, is now a better 

approximation of the actual currents on that plate. In addition, the surface current 

density, obtained using the improved method, does not exhibit any discontinuities 

as was the case with the previous method. However, the integrations in such 

a method can only be evaluated numerically. This is a major drawback of the 

improved method. Another drawback is that multiple reflections require multi- 

fold integrations which cannot be evaluated very accurately and quickly using 

current computers and numerical techniques. However, in the case of a trihedral 

corner reflector, the improved method requires evaluation of double and quadruble 

integrations only. Evaluation of a six-fold integration would be necessary if strictly 

PO were used for the triple reflections. Note that the formulation of the strictly 

PO triple reflected fields is not as difficult as the numerical evaluation of a six-fold 

integration. 

The formulations of a double and a triple reflected field, using the improved 

method, are given explicitly in the following subsections. Expressions for the rest 

of the reflected components can be derived following a similar procedure. The 

formulations for the singly reflected fields are the same as those derived for the 

previous method. Also, it is important to note that the following expressions are 

valid only when the plane wave source lies in the interior region of the trihedral. 

Although not very difficult to formulate, the RCS from the exterior region of the 

trihedral is not calculated using this improved method. 
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1. Double Reflection Formulation (Plate 1 to Plate 2) 

The incident plane wave magnetic field in the interior of either the square or the 

triangular trihedral corner reflector is given by 

Equation (6a) is evaluated, according to the PO approximation, on the surface of 

plate 1 in order to find the surface current density on that plate. This results in 

( 7 )  Ji = -2H0(iix cos $i + +,, sin $;)e  jk(d'sin%, cos&+y" sin%, sind,) 

The magnetic vector potential A can then be found using the following radiation 

surface integral: 
e-jkR" 

A1 = 47r J J ~ i - j j r  dxlldy'l 

where / I  denotes a point on the surface of integration, and I denotes the observation 

point. Also, note that 2' = 0 since the above integration is evaluated on the surface 

of plate 1. Substituting equation (7) into equation (Sa) results in 

e-jkR" 
dx"d y I' ejk(z"sin%, cosq$+y" sin%, sin4i) / /  R" (9) 

The reflected magnetic field from plate 1 can be found by taking the curl of the 

magnetic vector potential AI. 
1 

Hi  = -V x A1 
P 

In rectangular coordinates, equation (10) can be written as 
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However, in the case of the double reflection from plate 1 to plate 2 

Therefore, 

The partial derivatives in equation (13) are taken with respect to  XI, yl, z' thus H1 

can be written as 

where Q is defined as 

Note that the integration is over the entire surface of plate 1 since it is totally 

illuminated by the source. In other words, the surface of integration is either 

a square, for a square trihedral, or a triangle, for a triangular trihedral. The 

partial derivatives in equation (15) with respect to XI, yl, z' can be found in a 

straightforward way. 

Let us first consider the partial derivative of Q with respect to  XI. 

Based on the above formulation, therefore, we can write the final expressions of 

the partial derivatives of Q with respect to x',y', and z': 

( - j k ~ l l  - 1) . e-jkR" (xl  - xl/) 
- ( 1 7 4  Rll2 R" 

3 -  
d X '  
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Substituting equations (17a),( 17b), and (17c) into equation (14) the reflected 

magnetic field from plate 1 becomes 

Knowing the reflected magnetic field from plate 1, we can easily find the 

surface current density on any of the other two trihedral plates using the PO 

approximation. However, since we are interested in the double reflected fields from 

plate 1 to plate 2, only the surface current density on plate 2 is required here. 

Using the surface current density on plate 2 due to the double reflected field com- 

ponent R12 we can find the magnetic vector potential Al2. 

,-jkR’ 
A12 = LL J J J~~~ dy’dz’ 

47r 

R’ = {(x - x ’ ) ~  -I- (y - Y ’ ) ~  + ( z  - z ’ ) ~  
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This double integration is evaluated on the surface of plate 2. The I denotes any 

point on the surface of integration, whereas the x, y, and z denote the position of 

the observation point which is actually the receiver. Substituting (19b) into (20a) 

results in the following quadruple integration: 

The first double integration is evaluated on the surface of plate 1, whereas the 

second double integration is evaluated on the surface of plate 2. Both plates are 

totally illuminated. 

Knowing the magnetic vector potential A12, the double reflected fields can be 

found using the expressions below, which are valid only for the far-fields: 

where 

(224 

Ad = -sin$Ax+cosq5Ay ( 2 2 4  

AB = cos 0 cos dAz -+ cos 0 sin $Ay - sin 0A, 

2. Triple Reflection Formulation - Plate 1 to Plate 2 t o  Plate 3 

Expressions for the triply reflected fields of a trihedral corner reflector can be 

derived in a very similar manner to  those already derived for the doubly reflected 

fields. Instead of having a quadruple integration, the final expression will consist 
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of a six-fold integration since PO is applied on all three trihedral plates. However, 

in the improved method it was decided to  apply GO on the plate of first reflection 

in order to reduce the six-fold integration to a quadruple integration. The reason 

is that a six-fold integration is very difficult to accurately evaluate using even the 

most advanced computers. 

Applying GO on the plate of first reflection causes shadow regions on the sec- 

ond plate. This results in discontinuities in the surface current density that is in- 

duced on the second plate due to the reflected fields from the first plate. Therefore, 

even in the improved method we are required to compute the illuminated-shadow 

boundaries on the second plate due to  triply reflected fields. However, we are not 

required to compute the shading on the third plate since PO, instead of GO, is 

applied on the second plate. The reflected field from the second plate completely 

illuminates the third plate; thus, the surface current density is continuous and 

nonzero at all points on the surface of the last plate. 

Using this approach, the formulation of the triply reflected fields is very sim- 

ilar to  the formulation of the doubly reflected fields given previously. The only 

difference is that the first double integration is evaluated only on the illuminated 

area of the second plate instead of on its entire surface. The second double inte- 

gration is evaluated on the entire plate of last reflection, as it was for the doubly 

reflected fields. The expressions for the triply reflected fields R123 are given below. 

The incident magnetic field in the interior of the trihedral is given by equa- 

tion (sa). Applying GO and the appropriate boundary conditions on plate l ,  the 

resulting reflected magnetic field is given by 

L, = x sin 8; cos qL -t y sin 8; sin 4; - z cos 8; (24) 

The surface current density on the illuminated area of the second plate is then 

formed using the PO approximation: 
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On the shadowed area of the second plate, the surface current density, according 

to PO, is zero. The corresponding magnetic vector potential and the reflected 

magnetic field from plate 2 are: 

e-jkR" 
dxNdyN (26) ejk(y" sin 0, sin 4i-z" cos 0,) . 

Hop 2T J S  R" 
A12 = iz ~ 0 ~ 4 ; -  

The integrations in both the above two expressions are evaluated only over the 

illuminated area of plate 2. Note also that x" is zero in equations (26) and (27). 

Using the expression for H12, the surface current density on plate 3 can be 

found by using the PO approximation: 

In equation (28) both XI' and yl are zero. Knowing the surface current density on 

the third plate due to  the triple reflected fields R123, we can easily formulate the 

magnetic vector potential A: 

yl = 0 ( 2 9 4  

The quadruple integration must be evaluated numerically since there is no closed 

form solution to it. Gaussian quadrature was implemented in our computer pro- 

grams to carry out this integral. Sixteen or more evaluation points usually gives 
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an acceptable answer. Increasing the number of points in the Gaussian quadrature 

subroutine always improves the accuracy of the results; however, the computa- 

tional cost also increases. The above equations are incorporated into the far-field 

expressions to find the triply reflected fields from the interior of either the square 

or the triangular trihedral. Note that the surface of integration will be different in 

various cases. 

C. RESULTS 

RCS results based on the above formulations were obtained for both the square 

and triangular trihedral corner reflectors, shown in Fig. 6, for the Eo polarization. 

Fig. 7 shows the RCS of a 5X square trihedral for an incident angle 8 = 66". Fig. 

8 shows the RCS of a 1OX triangular trihedral for an incident angle 8 = 70". Both 

graphs show considerable improvements compared to those obtained using GO 

at all initial reflections and PO only at the plate of last reflection; however, the 

improved method requires more computational time than the previous method. 

Y 

'.. 
X x 

Figure 6: Geometry of the square and triangular trihedral corner reflectors. 

D. CONCLUSIONS 

In this report we have introduced a new approach to the RCS calculation of tri- 

hedral corner reflectors. Both the square and triangular trihedrals were examined. 
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Figure 7: Monostatic RCS of the square trihedral with dimensions a = b = c = 
5.0X, incident angle 6 = 66", and Eo polarization. 

Comparisons show that the results obtained with the new approach yield better 

agreement with experimental and/or FDTD data than the results obtained with 

the old approach, which was discussed extensively in the last two reports. The 

new approach, however, has a major drawback in that it requires more CPU time 

than the old approach. This is due to the fact that all the surface integrations 

are evaluated numerically. In addition, for double and triple reflections we need 

to evaluate a quadruple integration which requires four nested single integration 

routines. As a result, the CPU time, as well as the numerical error, increases con- 

siderably. The CPU time required to  evaluate a numerical integration increases 

with the number of points considered in the Gaussian quadrature. The accuracy of 

the results also improves as the number of the evaluation points increases. Good 

results were obtained with a 16-point Gaussian quadrature. 

The only possible way to reduce the CPU time required, as well as the nu- 

merical error, is to  break the integrand into two separate functions so that the 

25 



4s 

Figure 8: Monostatic RCS of the triangular trihedral with dimensions a = b = c = 
l O . O X ,  incident angle 6 = 70°, and Eo polarization. 
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evaluation of the quadruble integration becomes simply a multiplication of two 

double integrations. This, however, is a very challenging task to carry out because 

of the complexity of the integrand. 
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